High resolution infrared study of $CH_2^{81}BrF$ in the range 920 – 1370 cm⁻¹: rovibrational analysis and resonances of v_3 , v_4 , v_8 , v_9 fundamentals and v_5+v_6 combination band

P. Stoppa^{*a*}, R. Visinoni^{*a*}, <u>A. Baldacci^{*a*}</u>, <u>N. Tasinato^{*a*}</u>, <u>A. Pietropolli Charmet^{*a*}, S. Giorgianni^{*a*}, F. Kollipost^{*b*}, and R. Wugt Larsen^{*c*}</u>

^a Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Calle Larga Santa Marta 2137, Venezia, Italy

^b Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, Göttingen, Germany ^c Department of Chemistry, Technical University of Denmark, Kemitorvet 206, Kgs. Lyngby, Denmark

During the past years halogen-containing molecules have attracted a great deal of attention because of their alarming connection with stratospheric ozone depletion and global warming. However, reliable experimental data for many halocarbons are still unavailable, especially for those containing bromine.

High-resolution infrared spectra of CH_2BrF reveal a very dense rotational structure due to the absorptions coming from bromine isotopologues in the natural composition (50.7/49.3 of ^{79/81}Br). The employment of synthesized isotopically enriched samples are required in order to obtain a less dense structure and to simplify the rovibrational analysis. The IR spectrum of $CH_2^{81}BrF$ has been investigated in the range 920 – 1370 cm⁻¹ which is of considerable interest being a part of the main atmospheric window. The spectra have been measured at high resolution (0.0030 cm⁻¹) employing a Bruker IFS 120 HR Fourier transform spectrometer. The investigated spectral region is characterized by the absorptions of the v₉ (936 cm⁻¹), v₄ (1068 cm⁻¹), v₈ (1226 cm⁻¹), v₃ (1314 cm⁻¹) fundamentals and the v₅+v₆ (960 cm⁻¹) combination band.

 $CH_2^{81}BrF$, a near prolate asymmetric top molecule ($\kappa = -0.986$), belongs to the C_s point group with nine fundamental modes, six of A' ($v_1 - v_6$) and three of A" ($v_7 - v_9$) symmetry species. The v_3 and v_4 appear as a/b-hybrid bands with predominant *a*-type character whereas v_8 manifests the typical structure of a *c*-type band. The v_9 band, in marked contrast with the expected *c*-type structure, appears as a classic *a*-type band, while the v_5+v_6 combination disguises the predicted *a*-/*b*-hybrid appearance because of the high congested spectrum.

Due to the proximity of the band origins of the absorptions investigated to those of close lying overtones and combination bands, several anomalies were found in the observed spectra and different kinds of first order Coriolis resonances were identified. In particular, the established interactions involve the dyads $v_3/2v_5$, v_8/v_6+v_9 and the tetrad $v_4/v_9/v_5+v_6/3v_6$. In the last system, in spite of the large separation (132 cm⁻¹) between the v_4 and v_9 fundamentals, the *a*-type Coriolis resonance seems to be the reason for which v_9 borrows intensity from the very strong v_4 and emerges as a pseudo *a*-type band.

The spectral analysis for all the observed bands allowed the line identification up to high J and K_a quantum numbers and the assigned data were fitted using Watson's A-reduction Hamiltonian in the I^r representation and Coriolis operators. Excited state parameters, band origins and coupling terms