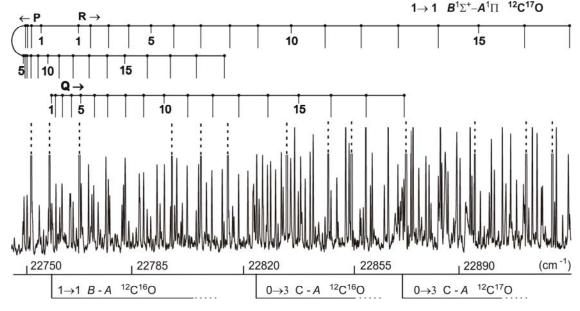
First analysis of the $B^1\Sigma^+(\nu=1)$ Rydberg state in the rare $^{12}C^{17}O$ isotopologue on the basis of the $1-\nu''$ progression of the Ångström band system

R. Hakalla^a, W. Szajna, M. Zachwieja, R. Kepa, I. Piotrowska, M. Ostrowska-Kopeć, P. Kolek


^a Atomic and Molecular Physics Laboratory, Institute of Physics, University of Rzeszów, Rejtana 16a, 35-959 Rzeszów, Poland

Tel.: (+48) 17-872-11-25, Fax: (+48) 17-872-12-83, E-mail: hakalla@univ.rzeszow.pl

So far unobserved in the rare $^{12}\text{C}^{17}\text{O}$ isotopologue, the $1-\nu'$ progression of the Ångström $(B^1\Sigma^+-A^1\Pi)$ band system was registered under high resolution in the 17 200 – 22 950 cm⁻¹ spectral region as an emission spectrum using a high accuracy dispersive optical spectroscopy. The rare $^{12}\text{C}^{17}\text{O}$ molecules were formed and excited in two steps in a stainless steel hollow-cathode lamp with two anodes. The emission from the discharge was observed with a plane-grating spectrograph and recorded by a photomultiplier tube.

In the studied region, the full rotational structure of the 1–1 and 1–5 bands of the B-A system was observed, in total 111 spectral emission lines up to J''=21. All those lines were precisely measured with an estimated accuracy of about $0.0030~\rm cm^{-1}$, and rotationally analysed. As a result, many molecular constants were determined for the first time for the $B^1\Sigma^+$ ($\nu=1$) state, unobserved so far in the ${}^{12}C^{17}O$ [1], as well as for the $A^1\Pi$ ($\nu=5$) state. We will also present the results of calculations concerning RKR turning points, FCF factors, relative intensities, and r-centroids for the Ångström band system in the ${}^{12}C^{17}O$ molecule. We have also determined the value of the $\Delta G_{1/2}$ vibrational quantum, the isotope shifts, as well as the main, isotopically invariant parameters of the $B^1\Sigma^+$ Rydberg state in the CO molecule within the Born-Oppenheimer approximation.

For the $A^1\Pi$, v=1 and 5 state considerable irregularities of the rotational structure have been observed and analysed in detail. Suspected candidates responsible for these perturbations have been identified. The $B^1\Sigma^+$, v=1 state has been thoroughly analysed in terms of possible perturbations and it turned out to be completely regular in the $^{12}C^{17}O$ molecule up to the observed maximum J value.

[1] R. Hakalla, W. Szajna, M. Zachwieja, J. Phys. B: At. Mol. Opt. Phys., 2012, 45, 215102.