An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes

H. Tran^{*a*}, D. Lisak^{*b*}, N. H. Ngo^{*a*}, J.-M. Hartmann^{*a*}

 ^a Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris-Est Créteil (UPEC), Université Paris Diderot (UPD) Université Paris-Est Créteil, 94010 Créteil Cedex, France E-mail: ha.tran@lisa.u-pec.fr
^b Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka, 5, 87-100 Torun, Poland

We demonstrate that the partially-Correlated quadratic-Speed Dependent Hard-Collision (pCqSDHC) model opens the route for the inclusion of refined non-Voigt profiles in spectroscopic databases and atmospheric radiative transfer codes. Indeed, this model fulfils many essential requirements: (i) It takes both velocity changes and the speed dependences of the pressure-broadening and -shifting coefficients into account. (ii) It leads to accurate descriptions of the line shapes of very different molecular systems. Tests made [1,2] for pure H₂, CO₂ and O₂ and for H₂O diluted in N₂ show that residuals are down to $\Box 0.2\%$ of the peak absorption, (except for the untypical system of H₂ where a maximum residual of ±3% is reached), thus fulfilling the precision requirements of the most demanding remote sensing experiments. (iii) It is based on a limited set of parameters for each absorption line that have known dependences on pressure and can thus be stored in databases. (iv) Its calculation requires very reasonable computer costs, only a few times higher than that of a usual Voigt profile. Its inclusion in radiative transfer codes will thus induce bearable CPU time increases. (v) It can be extended in order to take line-mixing effects into account, at least within the so-called first-order approximation.

FORTRAN subroutines for the calculation of the pCqSDHC model and of its two limits: the quadratic-Speed-Dependent Voigt (qSDV) and the quadratic-Speed-Dependent Hard-Collision (qSDHC) profiles are also provided. Numerical tests successfully confirm the analytically derived fact that all these profiles can be expressed as combinations of complex Voigt probability functions. Based on a slightly improved version of the CPF subroutine [3] for the calculation of the complex probability function, we show that the pCqSDHC, qSDHC and qSDV profiles can be quickly calculated with an accuracy better than 10^{-4} [4].

[1] N.H. Ngo, D. Lisak, H. Tran, J.-M. Hartmann, *J. Quant. Spectrosc. Radiat. Transf.* **2013**, in press (DOI: 10.1016/j.jqsrt.2013.05.034).

[2] D. Lisak, H. Tran et al. Isolated line-shape of H₂O: Validation of the partially-Correlated quadratic-Speed-Dependent Hard-Collision model, *in preparation*.

[3] J. Humlicek, J. Quant. Spectrosc. Radiat. Transf. 1979, 21, 309.

[4] H. Tran, N. H. Ngo, J.-M. Hartmann, *J. Quant. Spectrosc. Radiat. Transf.* **2013**, in press (DOI: 10.1016/j.jqsrt.2013.06.015).