High Resolution Infrared Spectroscopy of $CH_2D^{79}Br$: Analysis of the v_4 and v_8 Interacting Fundamental Bands

<u>A. Baldacci^a</u>, R. Visinoni^a, P. Stoppa^a, R. Wugt Larsen^b

 ^a Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Calle Larga Santa Marta 2137, Venezia, Italy
^b Department of Chemistry, Technical University of Denmark, Kemitorvet 206, Kgs. Lyngby, Denmark

The high resolution (0.0030 cm⁻¹) infrared spectrum of monodeutero methyl bromide, $CH_2D^{79}Br$, previously studied in the range 550 – 1080 cm⁻¹ [1, 2] has now been recorded between 1125 and 1360 cm⁻¹ employing the Bruker IFS 120 HR Fourier transform spectrometer located at the MAX-lab (Lund University, Sweden). This spectral region is characterized by the absorption associated with the v_4 (1225 cm⁻¹) and v_8 (1252 cm⁻¹) bands.

CH₂DBr, a near prolate asymmetric top molecule ($\kappa = -0.998$), belongs to the C_s symmetry group with nine normal vibrations, six of A' ($v_1 - v_6$) and three of A" ($v_7 - v_9$) symmetry species. The v_4 fundamental appears as an *a*-/*b*-hybrid band with predominant *a*-type character whereas v_8 manifests the typical structure of a *c*-type band.

These close lying levels undergo to mutual interactions through both *a*- and *b*-Coriolis coupling mainly affecting the low K_a sublevels. Owing to these interactions, some transitions of v_8 with selection rules $\Delta K_a = 0$ and $\Delta K_c = 0$, ± 2 have been identified in the spectrum. The rovibrational structure of the two fundamentals is further complicated by two additional resonances: *b*-type Coriolis interaction between v_8 and the $2v_6$ overtone and anharmonic resonance between v_4 and v_5+v_6 combination.

Preliminary results, obtained by fitting transitions up to J'=70 and $K_a'=10$ for both fundamentals, will be presented.

[1] A. Baldacci, P. Stoppa, S. Giorgianni, R. Wugt Larsen, *Mol. Phys.* **2010**, *108*, 733.

[2] A. Baldacci, R. Visinoni, R. Wugt Larsen, Chem. Phys. Lett. 2010, 499, 40.